Treatment of brackish water for fossil power plant cooling


  • Dieter, C. A. et al. Estimated Use of Water in the United States in 2015 Circular 1441 (US Geological Survey, 2018).

  • Today in energy. US Energy Information Administration https://www.eia.gov/todayinenergy/detail.php?id=36773 (2018).

  • Zhai, H., Rubin, E. S. & Versteeg, P. L. Water use at pulverized coal power plants with postcombustion carbon capture and storage. Environ. Sci. Technol. 45, 2479–2485 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tidwell, V. C., Moreland, B. D., Shaneyfelt, C. R. & Kobos, P. Mapping water availability, cost and projected consumptive use in the eastern United States with comparisons to the west. Environ. Res. Lett. 13, 014023 (2018).

    Article 

    Google Scholar 

  • Woodhouse, C. A. et al. Upper Colorado River Basin 20th century droughts under 21st century warming: plausible scenarios for the future. Clim. Serv. 21, 100206 (2021).

    Article 

    Google Scholar 

  • Byers, E. A., Coxon, G., Freer, J. & Hall, J. W. Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain. Nat. Commun. 11, 2239 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCall, J. & Macknick, J. Water-Related Power Plant Curtailments: An Overview of Incidents and Contributing Factors NREL/TP-6A20-67084 (National Renewable Energy Laboratory, 2016).

  • Zhai, H. et al. Dry cooling retrofits at existing fossil fuel-fired power plants in a water-stressed region: tradeoffs in water savings, cost, and capacity shortfalls. Appl. Energy 306, 117997 (2022).

    Article 

    Google Scholar 

  • Zhai, H. & Rubin, E. S. Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage. Energy Policy 38, 5653–5660 (2010).

    Article 

    Google Scholar 

  • Zhai, H. & Rubin, E. S. A techno-economic assessment of hybrid cooling systems for coal- and natural-gas-fired power plants with and without carbon capture and storage. Environ. Sci. Technol. 50, 4127–4134 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Childress, A. et al. National Alliance for Water Innovation (NAWI) Power Sector Technology Roadmap 2021 NREL/TP-6A20-79894 (National Renewable Energy Laboratory, 2021).

  • Scanlon, B. R. et al. Can we beneficially reuse produced water from oil and gas extraction in the US? Sci. Total Environ. 717, 137085 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harto, C., Finster, M., Schroeder, J. & Clark, C. Saline Water for Power Plant Cooling: Challenges and Opportunities ANL/EVS-14/15 (Argonne National Laboratory, 2014).

  • Munson, R., Murphy, J. & Walsh, K. Use of Non-Traditional Water for Power Plant Applications: An Overview of DOE/NETL R&D Efforts DOE/NETL-311/040609 (Science Applications International and Research Development Solutions, 2009).

  • Stillwell, A. S. & Webber, M. E. Geographic, technologic, and economic analysis of using reclaimed water for thermoelectric power plant cooling. Environ. Sci. Technol. 48, 4588–4595 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Municipal Wastewater Reuse by Electric Utilities: Best Practices and Future Directions Workshop Report (Water Environment Federation and American Society of Mechanical Engineers, 2012).

  • Stanton, J. S. et al. Brackish Groundwater in the United States Professional Paper 1833 (US Geological Survey, 2017).

  • Kahsar, R. The potential for brackish water use in thermoelectric power generation in the American southwest. Energy Policy 137, 111170 (2020).

    Article 

    Google Scholar 

  • Tidwell, V. C., Macknick, J., Zemlick, K., Sanchez, J. & Woldeyesus, T. Transitioning to zero freshwater withdrawal in the US for thermoelectric generation. Appl. Energy 131, 508–516 (2014).

    Article 

    Google Scholar 

  • Vane, L. M., Rock, K. & Jordan, D. Energy efficient vortex-enhanced water evaporation technology for concentrated brine management: theory and process simulation evaluation. Desalination 522, 115427 (2022).

    Article 
    CAS 

    Google Scholar 

  • Soliman, M. N. et al. Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Saf. Environ. Prot. 147, 589–608 (2021).

    Article 
    CAS 

    Google Scholar 

  • Elsaid, K. et al. Environmental impact of emerging desalination technologies: a preliminary evaluation. Process Saf. Environ. Prot. 8, 104099 (2020).

    CAS 

    Google Scholar 

  • Regulatory and guidance information by topic: water. US Environmental Protection Agency https://www.epa.gov/regulatory-information-topic/regulatory-and-guidance-information-topic-water#drinking (2021).

  • Permitting requirements for brine disposal methods. Arizona Department of Water Resources and Arizona Department of Environmental Quality https://new.azwater.gov/sites/default/files/GWAICC_DesalinationCommittee_BrinePermittingFactSheet_Final_0.pdf (2020).

  • Panagopoulos, A. & Haralambous, K. J. Environmental impacts of desalination and brine treatment—challenges and mitigation measures. Mar. Pollut. Bull. 161, 111773 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Voutchkov, N. Desalination Engineering: Planning and Design (McGraw Hill Professional, 2012).

  • Shemer, H. & Semiat, R. Sustainable RO desalination—energy demand and environmental impact. Desalination 424, 10–16 (2017).

    Article 
    CAS 

    Google Scholar 

  • Tong, T. & Elimelech, M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ. Sci. Technol. 50, 6846–6855 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arena, J. T. et al. Management and dewatering of brines extracted from geologic carbon storage sites. Int. J. Greenh. Gas Control 63, 194–214 (2017).

    Article 
    CAS 

    Google Scholar 

  • Curto, D., Franzitta, V. & Guercio, A. A review of the water desalination technologies. Appl. Sci. 11, 670 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, J. & Liu, X. Forward osmosis technology for water treatment: recent advances and future perspectives. J. Clean. Prod. 280, 124354 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cooley, H., Gleick, P. H. & Wolff, G. Desalination, with A Grain of Salt (Pacific Institute, 2006).

  • Ahdab, Y. D. & Lienhard, J. H. in Global Groundwater (eds Mukherjee, A. et al.) 559–575 (Elsevier, 2021).

  • Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V. & Kang, S. M. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657, 1343–1356 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Karaghouli, A. & Kazmerski, L. L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 24, 343–356 (2013).

    Article 
    CAS 

    Google Scholar 

  • Park, C., Lee, H., Hwang, Y. & Radermacher, R. Recent advances in vapor compression cycle technologies. Int. J. Refrig. 60, 118–134 (2015).

    Article 

    Google Scholar 

  • Use of Degraded Water Sources as Cooling Water in Power Plants (EPRI and California Energy Commission, 2003).

  • Central Arizona Salinity Study. Phase II—Brackish Groundwater (US Bureau of Reclamation, 2006).

  • Sullivan-Graham, J. Brackish and saline groundwater in New Mexico. New Mexico Earth Matters https://geoinfo.nmt.edu/publications/periodicals/earthmatters/15/n2/em_v15_n2.pdf (New Mexico Bureau of Geology and Mineral Resources, 2015).

  • Utton Center. in Water Matters! Ch. 14 (University of New Mexico School of Law, 2015).

  • Electricity data browser. US Energy Information Administration https://www.eia.gov/electricity/data/browser/ (2022).

  • Xu, X. et al. Analysis of brackish water desalination for municipal uses: case studies on challenges and opportunities. ACS EST Eng. 2, 306–322 (2022).

    Article 
    CAS 

    Google Scholar 

  • Micari, M. et al. Techno-economic assessment of multi-effect distillation process for the treatment and recycling of ion exchange resin spent brines. Desalination 456, 38–52 (2019).

    Article 
    CAS 

    Google Scholar 

  • Birnhack, L., Keller, O., Tang, S. C., Fridman-Bishop, N. & Lahav, O. A membrane-based recycling process for minimizing environmental effects inflicted by ion-exchange softening applications. Sep. Purif. Technol. 223, 24–30 (2019).

    Article 
    CAS 

    Google Scholar 

  • Mineral Commodity Summaries 2022 (US Geological Survey, 2022); https://pubs.er.usgs.gov/publication/mcs2022

  • Neofotistou, E. & Demadis, K. D. Use of antiscalants for mitigation of silica (SiO2) fouling and deposition: fundamentals and applications in desalination systems. Desalination 167, 257–272 (2004).

    Article 
    CAS 

    Google Scholar 

  • Yaqub, M. & Lee, W. Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: a review. Sci. Total Environ. 681, 551–563 (2019).

    Article 

    Google Scholar 

  • Wenzlick, M. & Siefert, N. Techno-economic analysis of converting oil and gas produced water into valuable resources. Desalination 481, 114381 (2020).

    Article 
    CAS 

    Google Scholar 

  • de Graaf, I. E., Gleeson, T., Van Beek, L., Sutanudjaja, E. H. & Bierkens, M. F. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Water Application Value Engine (WAVE) v1.82. DuPontTM https://www.dupont.com/water/resources/design-software.html (2021).

  • Brackish groundwater assessment. US Geological Survey https://water.usgs.gov/ogw/gwrp/brackishgw/brackish.html (2017).

  • Tidwell, V. & Jeffers, R. Water atlas features database. US Department of Energy https://doi.org/10.18141/1756186 (2021).

  • ArcGIS Pro 3.0. Esri https://pro.arcgis.com/en/pro-app/3.0/get-started/download-arcgis-pro.htm (2022).

  • Carpenter, Z., Chakalian, G. & Bushnell, D. S. A Water Rights Manual for Mutual Domestic Water Consumers Associations (Utton Center, University of New Mexico School of Law, Alberquerque, 2013).

    Google Scholar 

  • Water in the West. Groundwater permitting in the West. Stanford University https://groundwater.stanford.edu/dashboard/region.html (2016).

  • Wells 55. Arizona Department of Water Resource https://azwatermaps.azwater.gov/wellreg (2021).

  • POD locations. New Mexico Office of the State Engineer https://gis.ose.state.nm.us/gisapps/ose_pod_locations/ (2021).

  • Vidic, R. et al. Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants (University of Pittsburgh, 2009).

  • Secondary drinking water standards: guidance for nuisance chemicals. US Environmental Protection Agency https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals (2021).

  • Plata, S. L. et al. Zero liquid discharge and water reuse in recirculating cooling towers at power facilities: review and case study analysis. ACS EST Eng. 2, 508–525 (2022).

    Article 
    CAS 

    Google Scholar 

  • Singh, R. Membrane Technology and Engineering for Water Purification: Application, Systems Design and Operation (Butterworth-Heinemann, 2014).

  • Poulson, T. Strategic Alternatives for Brine Management in the Valley of the Sun (Central Arizona Salinity Study, 2010).

  • eMaps. Arizona Department of Environmental Quality https://azdeq.gov/emaps (2023).

  • Product Data Sheet. FilmTec™ Eco Pro-440i Elements. Form No. 45-D01715-en, Rev. 2. DuPont™ https://www.dupont.com/products/filmtececopro440i.html (2020).

  • Zhai, H. & Rubin, E. S. Techno-economic assessment of polymer membrane systems for postcombustion carbon capture at coal-fired power plants. Environ. Sci. Technol. 47, 3006–3014 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhai, H. & Rubin, E. S. Systems analysis of physical absorption of CO2 in ionic liquids for pre-combustion carbon capture. Environ. Sci. Technol. 52, 4996–5004 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Integrated Environmental Control Model (IECM) v11.4. Carnegie Mellon Univ. http://www.iecm-online.com/ (2020).

  • Islam, M., Sultana, A., Saadat, A., Shammi, M. & Uddin, M. Desalination technologies for developing countries: a review. J. Sci. Res. 10, 77–97 (2018).

    Article 

    Google Scholar 

  • Tripathy, D. B., Murmu, M., Banerjee, P. & Quraishi, M. A. Palmitic acid based environmentally benign corrosion inhibiting formulation useful during acid cleansing process in MSF desalination plants. Desalination 472, 114128 (2019).

    Article 
    CAS 

    Google Scholar 

  • Al-Othman, A., Tawalbeh, M., Assad, M. E. H., Alkayyali, T. & Eisa, A. Novel multi-stage flash (MSF) desalination plant driven by parabolic trough collectors and a solar pond: a simulation study in UAE. Desalination 443, 237–244 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wu, D., Hu, B. & Wang, R. Vapor compression heat pumps with pure low-GWP refrigerants. Renew. Sustain. Energy Rev. 138, 110571 (2021).

    Article 
    CAS 

    Google Scholar 

  • She, X. et al. Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: a comprehensive review. Appl. Energy 232, 157–186 (2018).

    Article 
    CAS 

    Google Scholar 

  • Pan, S. Y., Haddad, A. Z., Kumar, A. & Wang, S. W. Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus. Water Res. 183, 116064 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vince, F., Marechal, F., Aoustin, E. & Bréant, P. Multi-objective optimization of RO desalination plants. Desalination 222, 96–118 (2008).

    Article 
    CAS 

    Google Scholar 

  • Patel, S. K., Biesheuvel, P. M. & Elimelech, M. Energy consumption of brackish water desalination: identifying the sweet spots for electrodialysis and reverse osmosis. ACS EST Eng. 1, 851–864 (2021).

    Article 
    CAS 

    Google Scholar 

  • Karabelas, A., Koutsou, C., Kostoglou, M. & Sioutopoulos, D. Analysis of specific energy consumption in reverse osmosis desalination processes. Desalination 431, 15–21 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ruiz-García, A. & de la Nuez Pestana, I. Feed spacer geometries and permeability coefficients. Effect on the performance in BWRO spriral-wound membrane modules. Water 11, 152 (2019).

    Article 

    Google Scholar 

  • Alsarayreh, A. A., Al-Obaidi, M., Al-Hroub, A., Patel, R. & Mujtaba, I. M. Evaluation and minimisation of energy consumption in a medium-scale reverse osmosis brackish water desalination plant. J. Clean. Prod. 248, 119220 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hamed, O. A. in Corrosion and Fouling Control in Desalination Industry (eds Saji, V. S. et al.) 29–47 (Springer Nature Switzerland AG, 2020).

  • Feria-Díaz, J. J., López-Méndez, M. C., Rodríguez-Miranda, J. P., Sandoval-Herazo, L. C. & Correa-Mahecha, F. Commercial thermal technologies for desalination of water from renewable energies: a state of the art review. Processes 9, 262 (2021).

    Article 

    Google Scholar 

  • Wenten, I. G. Reverse osmosis applications: prospect and challenges. Desalination 391, 112–125 (2016).

    Article 
    CAS 

    Google Scholar 

  • Mohammadi, R., Tang, W. & Sillanpää, M. A systematic review and statistical analysis of nutrient recovery from municipal wastewater by electrodialysis. Desalination 498, 114626 (2021).

    Article 
    CAS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *