Room temperature phosphorescence from natural wood activated by external chloride anion treatment


  • Xu, S., Chen, R. F., Zheng, C. & Huang, W. Excited State Modulation for Organic Afterglow: Materials and Applications. Adv. Mater. 28, 9920–9940 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, W. J., He, Z. K. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y., Gecevicius, M. & Qiu, J. R. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev. 45, 2090–2136 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jia, X. et al. Photoexcitation-controlled self-recoverable molecular aggregation for flicker phosphorescence. Proc. Natl. Acad. Sci. USA 116, 4816–4821 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, D., Yang, J., Fang, M., Tang, B. Z. & Li, Z. Stimulus-responsive room temperature phosphorescence materials with full-color tunability from pure organic amorphous polymers. Sci. Adv. 8, eabl8392 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. & Shi, H. F. Lignin rebirth enables sustainable afterglow emission. Matter 4, 3087–3088 (2021).

    Article 
    CAS 

    Google Scholar 

  • Sun, Y. Q. et al. Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nat. Commun. 11, 5591 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gong, Y. X., Yang, J., Fang, M. M. & Li, Z. Room-temperature phosphorescence from metal-free polymer-based materials. Cell Rep. Phys. Sci. 3, 100663 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhang, T. et al. Molecular Engineering for Metal-Free Amorphous Materials with Room-Temperature Phosphorescence. Angew. Chem. Int. Ed. 59, 11206–11216 (2020).

    Article 
    CAS 

    Google Scholar 

  • Gan, N., Shi, H. F., An, Z. F. & Huang, W. Recent Advances in Polymer-Based Metal-Free Room-Temperature Phosphorescent Materials. Adv. Funct. Mater. 28, 1802657 (2018).

    Article 

    Google Scholar 

  • Wu, Z., Nitsch, J. & Marder, T. B. Persistent Room-Temperature Phosphorescence from Purely Organic Molecules and Multi-Component Systems. Adv. Opt. Mater. 9, 2100411 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liang, Y.-C. et al. Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks. Nano Res. 13, 875–881 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xiao, F. et al. Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging. Nat. Commun. 13, 186 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, R. & Yan, D. Layered host-guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface. Chem. Sci. 8, 590–599 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hamzehpoor, E. & Perepichka, D. F. Crystal Engineering of Room Temperature Phosphorescence in Organic Solids. Angew. Chem. Int. Ed. 59, 9977–9981 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, G., Palmer, G. M., Dewhirst, M. & Fraser, C. L. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat. Mater. 8, 747–751 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Attar, H. A. & Monkman, A. P. Room-Temperature Phosphorescence From Films of Isolated Water-Soluble Conjugated Polymers in Hydrogen-Bonded Matrices. Adv. Funct. Mater. 22, 3824–3832 (2012).

    Article 
    CAS 

    Google Scholar 

  • Wang, P. et al. Producing long afterglow by cellulose confinement effect: A wood-inspired design for sustainable phosphorescent materials. Carbon 171, 946–952 (2021).

    Article 
    CAS 

    Google Scholar 

  • Xu, M. et al. Designing Hybrid Chiral Photonic Films with Circularly Polarized Room-Temperature Phosphorescence. ACS Nano 14, 11130–11139 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J., Wang, Y., Zhang, Y., Zheng, D. & Wang, X. Carboxylate-Induced RTP Based on Gelatin for Anticounterfeiting. Part. Part. Syst. Charact. 39, 2100254 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yuan, J. et al. Sustainable afterglow materials from lignin inspired by wood phosphorescence. Cell Rep. Phys. Sci. 2, 100542 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cai, S. et al. Ultralong Organic Phosphorescent Foams with High Mechanical Strength. J. Am. Chem. Soc. 143, 16256–16263 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, J. et al. Tunable Photoluminescence Properties of Microcrystalline Cellulose with Gradually Changing Crystallinity and Crystal Form. Macromol. Rapid Commun. 42, 2100321 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wan, K. et al. Structural materials with afterglow room temperature phosphorescence activated by lignin oxidation. Nat. Commun. 13, 5508 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fratzl, P. Wood made denser and stronger. Nature. 554, 172–173 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, B. et al. Lignin as a Wood-Inspired Binder Enabled Strong, Water Stable, and Biodegradable Paper for Plastic Replacement. Adv. Funct. Mater. 30, 1906307 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xia, Q. et al. In Situ Lignin Modification toward Photonic Wood. Adv.Mater. 33, 2001588 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, X. et al. Strong, Hydrostable, and Degradable Straws Based on Cellulose-Lignin Reinforced Composites. Small. 17, 2008011 (2021).

    Article 
    CAS 

    Google Scholar 

  • Xia, Q. et al. Solar-assisted fabrication of large-scale, patternable transparent wood. Sci. Adv. 7, eabd7342 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, X. et al. When MOFs meet wood: From opportunities toward applications. Chem 8, 2342–2361 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sun, X., Zhang, B., Li, X., Trindle, C. O. & Zhang, G. External Heavy-Atom Effect via Orbital Interactions Revealed by Single-Crystal X-ray Diffraction. J. Phys. Chem. A 120, 5791–5797 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, Z. A., Lin, X., Sun, S., Ma, X. & Tian, H. Activating Room-Temperature Phosphorescence of Organic Luminophores via External Heavy-Atom Effect and Rigidity of Ionic Polymer Matrix. Angew. Chem. Int. Ed. 60, 19735–19739 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, J. G. et al. A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nat. Commun. 9, 2963 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, L., Sun, S., Ding, B., Ma, X. & Tian, H. Highly Efficient Room-Temperature Phosphorescence Based on Single-Benzene Structure Molecules and Photoactivated Luminescence with Afterglow. Adv. Funct. Mater. 31, 2010659 (2021).

    Article 
    CAS 

    Google Scholar 

  • Nidhankar, A. D. et al. Self-Assembled Helical Arrays for the Stabilization of the Triplet State. Angew. Chem. Int. Ed. 59, 13079–13085 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lucenti, E. et al. Cyclic Triimidazole Derivatives: Intriguing Examples of Multiple Emissions and Ultralong Phosphorescence at Room Temperature. Angew. Chem. Int. Ed. 56, 16302–16307 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wang, T. et al. Aggregation-Induced Dual-Phosphorescence from Organic Molecules for Nondoped Light-Emitting Diodes. Adv. Mater. 31, 1904273 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chen, C. et al. Carbazole isomers induce ultralong organic phosphorescence. Nat. Mater. 20, 175–180 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Tian, Z. et al. Multilevel Data Encryption Using Thermal-Treatment Controlled Room Temperature Phosphorescence of Carbon Dot/Polyvinylalcohol Composites. Adv. Sci. 5, 1800795 (2018).

    Article 

    Google Scholar 

  • Cai, S. et al. Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking. Nat. Commun. 10, 4247 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Zhai, Y. et al. Carbon dots confined in 3D polymer network: Producing robust room temperature phosphorescence with tunable lifetimes. Chin. Chem. Lett. 33, 783–787 (2022).

    Article 
    CAS 

    Google Scholar 

  • Jia, C. et al. From Wood to Textiles: Top-Down Assembly of Aligned Cellulose Nanofibers. Adv. Mater. 30, e1801347 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Liang, Y.-C. et al. Phosphorescent Carbon-Nanodots-Assisted Forster Resonant Energy Transfer for Achieving Red Afterglow in an Aqueous Solution. ACS Nano 15, 16242–16254 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, Y. et al. Full-Color Long-Lived Room Temperature Phosphorescence in Aqueous Environment. Small 18, 2201223 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wei, J.-H., Ou, W.-T., Luo, J.-B. & Kuang, D.-B. Zero-Dimensional Zn-Based Halides with Ultra-Long Room-Temperature Phosphorescence for Time-Resolved Anti-Counterfeiting. Angew. Chem. Int. Ed. 134, e202207985 (2022).

    Article 

    Google Scholar 

  • Doroodmand, M. M. & Askari, M. Synthesis of a novel nitrogen-doped carbon dot by microwave-assisted carbonization method and its applications as selective probes for optical pH (acidity) sensing in aqueous/nonaqueous media, determination of nitrate/nitrite, and optical recognition of NOX gas. Anal. Chim. Acta. 968, 74–84 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karali, K. K., Sygellou, L. & Stalikas, C. D. Highly fluorescent N-doped carbon nanodots as an effective multi-probe quenching system for the determination of nitrite, nitrate and ferric ions in food matrices. Talanta 189, 480–488 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Q. et al. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat. Commun. 9, 734 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Li, D. et al. Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color. Nat. Commun. 13, 347 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Zhu, L. et al. Transparent Bioplastics from Super-Low Lignin Wood with Abundant Hydrophobic Cellulose Crystals. ACS Sustainable Chem. Eng. 10, 13775–13785 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X., Li, L. & Xu, F. Chemical Characteristics of Wood Cell Wall with an Emphasis on Ultrastructure: A Mini-Review. Forests 13, 439 (2022).

    Article 

    Google Scholar 

  • Yang, Q. et al. Rechargeable Aqueous Mn-Metal Battery Enabled by Inorganic-Organic Interfaces. Angew. Chem. Int. Ed. 61, e202206471 (2022).

    CAS 

    Google Scholar 

  • Shi, Z. et al. Bioapplications of small molecule Aza-BODIPY: from rational structural design to in vivo investigations. Chem. Soc. Rev. 49, 7533–7567 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiao, Y.-F. et al. Achieving high singlet-oxygen generation by applying the heavy-atom effect to thermally activated delayed fluorescent materials. Chem. Commun. 57, 4902–4905 (2021).

    Article 
    CAS 

    Google Scholar 

  • Galland, M. et al. A “Multi-Heavy-Atom” Approach toward Biphotonic Photosensitizers with Improved Singlet-Oxygen Generation Properties. Chem. Eur. J. 25, 9026–9034 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wan, Q. et al. Molecular Engineering to Boost AIE-Active Free Radical Photogenerators and Enable High-Performance Photodynamic Therapy under Hypoxia. Adv. Funct. Mater. 30, 2002057 (2020).

    Article 
    CAS 

    Google Scholar 

  • Jia, C. et al. Rich Mesostructures Derived from Natural Woods for Solar Steam Generation. Joule. 1, 588–599 (2017).

    Article 

    Google Scholar 

  • He, F. et al. A simple, mild and versatile method for preparation of photothermal woods toward highly efficient solar steam generation. Nano Energy. 71, 104650 (2020).

    Article 
    CAS 

    Google Scholar 

  • Garemark, J. et al. Advancing Hydrovoltaic Energy Harvesting from Wood through Cell Wall Nanoengineering. Adv. Funct. Mater. 33, 2208933 (2023).

  • Montanari, C., Ogawa, Y., Olsen, P. & Berglund, L. A. High Performance, Fully Bio-Based, and Optically Transparent Wood Biocomposites. Adv. Sci. 8, 2100559 (2021).

    Article 
    CAS 

    Google Scholar 

  • Santos, R. B., Capanema, E. A., Balakshin, M. Y., Chang, H.-M. & Jameel, H. Lignin Structural Variation in Hardwood Species. J. Agric. Food Chem. 60, 4923–4930 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ralph, J., Lapierre, C. & Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol. 56, 240–249 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xue, Y. et al. Aggregation-induced emission: the origin of lignin fluorescence. Polym. Chem. 7, 3502–3508 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ma, Z. et al. Seeking Brightness from Nature: J-Aggregation-Induced Emission in Cellulolytic Enzyme Lignin Nanoparticles. ACS Sustain.Chem. Eng. 6, 3169–3175 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chen H. Lignocellulose Biorefinery Feedstock Engineering. 37–86 (2015).

  • Alvarez-Vasco, C. et al. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem. 18, 5133–5141 (2016).

    Article 
    CAS 

    Google Scholar 

  • Li, Q. et al. Study on preparation and properties of energy-storing self-luminous plastics. Energy Rep. 7, 559–565 (2021).

    Article 

    Google Scholar 

  • Zhang, Y. et al. Large-Area, Flexible, Transparent, and Long-Lived Polymer-Based Phosphorescence Films. J. Am. Chem. Soc. 143, 13675–13685 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, X. & Berglund, L. A. Structural and Ecofriendly Holocellulose Materials from Wood: Microscale Fibers and Nanoscale Fibrils. Adv.Mater. 33, 2001118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Shi, H. et al. Ultralong Organic Phosphorescence: From Material Design to Applications. Acc. Chem. Res. 55, 3445–3459 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, X., Wang, J. & Tian, H. Assembling-Induced Emission: An Efficient Approach for Amorphous Metal-Free Organic Emitting Materials with Room Temperature Phosphorescence. Acc. Chem. Res. 52, 738–748 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hirata, S. Recent Advances in Materials with Room-Temperature Phosphorescence: Photophysics for Triplet Exciton Stabilization. Adv. Optical Mater. 5, 1700116 (2017).

    Article 

    Google Scholar 

  • Gao, R., Kodaimati, M. S. & Yan, D. Recent advances in persistent luminescence based on molecular hybrid materials. Chem. Soc. Rev. 50, 5564–5589 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, M. et al. Excitation-dependent organic phosphors exhibiting different luminescence colors for information anti-counterfeiting. Chem. Eng. J. 429, 132288 (2022).

    Article 
    CAS 

    Google Scholar 

  • Nie, F., Zhou, B. & Yan, D. Ultralong room temperature phosphorescence and reversible mechanochromic luminescence in ionic crystals with structural isomerism. Chem. Eng. J. 453, 139806 (2023).

    Article 
    CAS 

    Google Scholar 

  • Xie, Y. et al. How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations. Adv. Mater. 29, 1606829 (2017).

    Article 

    Google Scholar 

  • Yang, J. et al. Achieving Efficient Phosphorescence and Mechanoluminescence in Organic Host-Guest System by Energy Transfer. Adv. Funct. Mater. 31, 2108072 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yin, Z. et al. Molecular Engineering through Control of Structural Deformation for Highly Efficient Ultralong Organic Phosphorescence. Angew. Chem. Int. Ed. 60, 2058–2063 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, B. et al. An Organic Host-Guest System Producing Room-Temperature Phosphorescence at the Parts-Per-Billion Level. Angew. Chem. Int. Ed. 60, 16970–16973 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Highly efficient and persistent room temperature phosphorescence from cluster exciton enables ultrasensitive off-on VOC sensing. Matter 5, 3499–3512 (2022).

    Article 
    CAS 

    Google Scholar 

  • Liu, H. et al. Highly Efficient Blue Phosphorescence from Pillar-Layer MOFs by Ligand Functionalization. Adv. Mater. 34, 2107612 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, J. et al. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Res. 13, 1614–1619 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance. Nat. Commun. 13, 1117 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Z. et al. Gram-Scale Synthesis of 41% Efficient Single-Component White-Light-Emissive Carbonized Polymer Dots with Hybrid Fluorescence/Phosphorescence for White Light-Emitting Diodes. Adv. Sci. 7, 1902688 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liu, R., Jiang, T., Liu, D. & Ma, X. A facile and green strategy to obtain organic room-temperature phosphorescence from natural lignin. Sci. China Chem. 65, 1100–1104 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, H. et al. Amorphous Ionic Polymers with Color-Tunable Ultralong Organic Phosphorescence. Angew. Chem. Int. Ed. 58, 18776–18782 (2019).

    Article 
    CAS 

    Google Scholar 

  • Dou, X. et al. Color-Tunable, Excitation-Dependent, and Time-Dependent Afterglows from Pure Organic Amorphous Polymers. Adv. Mater. 32, 2004768 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pazhany, A. S. & Henry, R. J. Genetic Modification of Biomass to Alter Lignin Content and Structure. Ind. Eng. Chem. Res. 58, 16190–16203 (2019).

    Article 
    CAS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *