NREM sleep as a novel protective cognitive reserve factor in the face of Alzheimer’s disease pathology | BMC Medicine


  • Manly JJ, Jones RN, Langa KM, Ryan LH, Levine DA, McCammon R, et al. Estimating the Prevalence of Dementia and Mild Cognitive Impairment in the US: The 2016 Health and Retirement Study Harmonized Cognitive Assessment Protocol Project. JAMA Neurol. 2022;79:1242–9. https://doi.org/10.1001/jamaneurol.2022.3543.

    Article 
    PubMed 

    Google Scholar 

  • Prince M, Wimo A, Guerchet M, et al. World Alzheimer Report 2015: The Global Impact of Dementia – An analysis of prevalence, incidence, cost and trends. Alzheimer’s Disease International. 2015. https://www.alzint.org/u/WorldAlzheimerReport2015.pdf. Accessed 01 Feb 2023.

  • Pike KE, Ellis KA, Villemagne VL, Good N, Chételat G, Ames D, et al. Cognition and beta-amyloid in preclinical Alzheimer’s disease: Data from the AIBL study. Neuropsychologia. 2011;49:2384–90. https://doi.org/10.1016/j.neuropsychologia.2011.04.012.

    Article 
    PubMed 

    Google Scholar 

  • Petersen RC, Wiste HJ, Weigand SD, Rocca WA, Roberts RO, Mielke MM, et al. Association of Elevated Amyloid Levels With Cognition and Biomarkers in Cognitively Normal People From the Community. JAMA Neurol. 2016;73:85–92. https://doi.org/10.1001/jamaneurol.2015.3098.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim YY, Pietrzak RH, Ellis KA, Jaeger J, Harrington K, Ashwood T, et al. Rapid decline in episodic memory in healthy older adults with high amyloid-β. J Alzheimers Dis JAD. 2013;33:675–9. https://doi.org/10.3233/JAD-2012-121516.

    Article 
    PubMed 

    Google Scholar 

  • Papp KV, Mormino EC, Amariglio RE, Munro C, Dagley A, Schultz AP, et al. Biomarker Validation of a Decline in Semantic Processing in Preclinical Alzheimer’s Disease. Neuropsychology. 2016;30:624–30. https://doi.org/10.1037/neu0000246.

    Article 
    PubMed 

    Google Scholar 

  • Roe CM, Fagan AM, Grant EA, Hassenstab J, Moulder KL, Maue Dreyfus D, et al. Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology. 2013;80:1784–91. https://doi.org/10.1212/WNL.0b013e3182918ca6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Betthauser TJ, Koscik RL, Jonaitis EM, Allison SL, Cody KA, Erickson CM, et al. Amyloid and tau imaging biomarkers explain cognitive decline from late middle-age. Brain. 2020;143:320–35. https://doi.org/10.1093/brain/awz378.

    Article 
    PubMed 

    Google Scholar 

  • Schöll M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, et al. PET Imaging of Tau Deposition in the Aging Human Brain. Neuron. 2016;89:971–82. https://doi.org/10.1016/j.neuron.2016.01.028.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28. https://doi.org/10.1016/S1474-4422(09)70299-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mormino EC. The relevance of beta-amyloid on markers of Alzheimer’s disease in clinically normal individuals and factors that influence these associations. Neuropsychol Rev. 2014;24:300–12. https://doi.org/10.1007/s11065-014-9267-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, Belleville S, Cantilon M, Chetelat G, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 2020;16:1305–11. https://doi.org/10.1016/j.jalz.2018.07.219.

    Article 
    PubMed 

    Google Scholar 

  • Bartrés-Faz D, Arenaza-Urquijo E, Ewers M, Belleville S, Chételat G, Franzmeier N, et al. Theoretical frameworks and approaches used within the Reserve, Resilience and Protective Factors professional interest area of the Alzheimer’s Association International Society to Advance Alzheimer’s Research and Treatment. Alzheimers Dement Diagn Assess Dis Monit. 2020;12:e12115. https://doi.org/10.1002/dad2.12115.

    Article 

    Google Scholar 

  • Vemuri P, Lesnick TG, Przybelski SA, Knopman DS, Preboske GM, Kantarci K, et al. Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly. Brain. 2015;138:761–71. https://doi.org/10.1093/brain/awu393.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Groot C, van Loenhoud AC, Barkhof F, van Berckel BNM, Koene T, Teunissen CC, et al. Differential effects of cognitive reserve and brain reserve on cognition in Alzheimer disease. Neurology. 2018;90:e149–56. https://doi.org/10.1212/WNL.0000000000004802.

    Article 
    PubMed 

    Google Scholar 

  • Kemppainen NM, Aalto S, Karrasch M, Någren K, Savisto N, Oikonen V, et al. Cognitive reserve hypothesis: Pittsburgh Compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer’s disease. Ann Neurol. 2008;63:112–8. https://doi.org/10.1002/ana.21212.

    Article 
    PubMed 

    Google Scholar 

  • Boots EA, Schultz SA, Almeida RP, Oh JM, Koscik RL, Dowling MN, et al. Occupational Complexity and Cognitive Reserve in a Middle-Aged Cohort at Risk for Alzheimer’s Disease. Arch Clin Neuropsychol. 2015;30:634–42. https://doi.org/10.1093/arclin/acv041.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D, Mayeux R. Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA. 1994;271:1004–10.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, et al. Physical Activity, Diet, and Risk of Alzheimer Disease. JAMA. 2009;302:627–37. https://doi.org/10.1001/jama.2009.1144.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okonkwo OC, Schultz SA, Oh JM, Larson J, Edwards D, Cook D, et al. Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology. 2014;83:1753–60. https://doi.org/10.1212/WNL.0000000000000964.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones K, Harrison Y. Frontal lobe function, sleep loss and fragmented sleep. Sleep Med Rev. 2001;5:463–75. https://doi.org/10.1053/smrv.2001.0203.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11:114–26. https://doi.org/10.1038/nrn2762.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Papalambros NA, Santostasi G, Malkani RG, Braun R, Weintraub S, Paller KA, et al. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults. Front Hum Neurosci. 2017;11:109. https://doi.org/10.3389/fnhum.2017.00109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ladenbauer J, Ladenbauer J, Külzow N, de Boor R, Avramova E, Grittner U, et al. Promoting Sleep Oscillations and Their Functional Coupling by Transcranial Stimulation Enhances Memory Consolidation in Mild Cognitive Impairment. J Neurosci. 2017;37:7111–24. https://doi.org/10.1523/JNEUROSCI.0260-17.2017.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Der Werf YD, Altena E, Schoonheim MM, Sanz-Arigita EJ, Vis JC, De Rijke W, et al. Sleep benefits subsequent hippocampal functioning. Nat Neurosci. 2009;12:122–3. https://doi.org/10.1038/nn.2253.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mander BA, Marks SM, Vogel JW, Rao V, Lu B, Saletin JM, et al. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci. 2015;18:1051–7. https://doi.org/10.1038/nn.4035.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Molano JRV, Roe CM, Ju Y-ES. The interaction of sleep and amyloid deposition on cognitive performance. J Sleep Res. 2017;26:288–92. https://doi.org/10.1111/jsr.12474.

    Article 
    PubMed 

    Google Scholar 

  • Villeneuve S, Rabinovici GD, Cohn-Sheehy BI, Madison C, Ayakta N, Ghosh PM, et al. Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain. 2015;138:2020–33. https://doi.org/10.1093/brain/awv112.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maass A, Berron D, Harrison TM, Adams JN, La Joie R, Baker S, et al. Alzheimer’s pathology targets distinct memory networks in the ageing brain. Brain. 2019;142:2492–509. https://doi.org/10.1093/brain/awz154.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winer JR, Mander BA, Helfrich RF, Maass A, Harrison TM, Baker SL, et al. Sleep as a Potential Biomarker of Tau and β-Amyloid Burden in the Human Brain. J Neurosci. 2019;39:6315–24. https://doi.org/10.1523/JNEUROSCI.0503-19.2019.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Achermann P, Borbély AA. Low-frequency (<1Hz) oscillations in the human sleep electroencephalogram. Neuroscience. 1997;81:213–22. https://doi.org/10.1016/S0306-4522(97)00186-3.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steriade M, Contreras D, Curro Dossi R, Nunez A. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci. 1993;13:3284–99. https://doi.org/10.1523/JNEUROSCI.13-08-03284.1993.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jack CR, Knopman DS, Weigand SD, Wiste HJ, Vemuri P, Lowe V, et al. An operational approach to National Institute on Aging–Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol. 2012;71:765–75. https://doi.org/10.1002/ana.22628.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vos SJ, Xiong C, Visser PJ, Jasielec MS, Hassenstab J, Grant EA, et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 2013;12:957–65. https://doi.org/10.1016/S1474-4422(13)70194-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kocevska D, Lysen TS, Dotinga A, Koopman-Verhoeff ME, Luijk MP, Antypa N, et al. Sleep characteristics across the lifespan in 1.1 million people from the Netherlands, United Kingdom and United States: a systematic review and meta-analysis. Nat Hum Behav. 2021;5:113–22.

    Article 
    PubMed 

    Google Scholar 

  • Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. Meta-Analysis of Quantitative Sleep Parameters From Childhood to Old Age in Healthy Individuals: Developing Normative Sleep Values Across the Human Lifespan. Sleep. 2004;27:1255–73. https://doi.org/10.1093/sleep/27.7.1255.

    Article 
    PubMed 

    Google Scholar 

  • Agnew HW Jr, Webb WB Jr, Williams RL Jr. The first night effect: An EEG study of sleep. Psychophysiology. 1966;2:263–6. https://doi.org/10.1111/j.1469-8986.1966.tb02650.x.

    Article 
    PubMed 

    Google Scholar 

  • Wauquier A, Van Sweden B, KerkhofGA KHAC. Ambulatory first night sleep effect recording in the elderly. Behav Brain Res. 1991;42:7–11. https://doi.org/10.1016/S0166-4328(05)80034-8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mander BA, Rao V, Lu B, Saletin JM, Ancoli-Israel S, Jagust WJ, et al. Impaired Prefrontal Sleep Spindle Regulation of Hippocampal-Dependent Learning in Older Adults. Cereb Cortex. 2014;24:3301–9. https://doi.org/10.1093/cercor/bht188.

    Article 
    PubMed 

    Google Scholar 

  • Siscovick DS, Fried L, Mittelmark M, Rutan G, Bild D, O’Leary DH, et al. Exercise Intensity and Subclinical Cardiovascular Disease in the Elderly: The Cardiovascular Health Study. Am J Epidemiol. 1997;145:977–86. https://doi.org/10.1093/oxfordjournals.aje.a009066.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maass A, Lockhart SN, Harrison TM, Bell RK, Mellinger T, Swinnerton K, et al. Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging. J Neurosci. 2018;38:530–43. https://doi.org/10.1523/JNEUROSCI.2028-17.2017.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabinovici GD, Furst AJ, O’Neil JP, Racine CA, Mormino EC, Baker SL, et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology. 2007;68:1205–12. https://doi.org/10.1212/01.wnl.0000259035.98480.ed.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Logan J, Fowler JS, Volkow ND, Wang G-J, Ding Y-S, Alexoff DL. Distribution Volume Ratios without Blood Sampling from Graphical Analysis of PET Data. J Cereb Blood Flow Metab. 1996;16:834–40. https://doi.org/10.1097/00004647-199609000-00008.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic Modeling of Amyloid Binding in Humans using PET Imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47. https://doi.org/10.1038/sj.jcbfm.9600146.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vallat R, Walker MP. An open-source, high-performance tool for automated sleep staging. ELife. 2021;10:e70092. https://doi.org/10.7554/eLife.70092.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berry RB, Albertario CL, Harding SM, Lloyd RM, Plante DT, Quan SF, Troester MM, Vaughn BV. The AASM manual for the scoring of sleep and associated events. Rules, Terminology and Technical Specifications, Version 2.5. Darien, IL: Am Acad Sleep Med. 2018:17–32.

  • Vallat R. Yet Another Spindles Algorithm (YASA), open-source package released on GitHub under a BSD-3 Clause License. version 0.6.1. GitHub. 2018. https://github.com/raphaelvallat/yasa.

    Google Scholar 

  • Sperling RA. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74:44–50. https://doi.org/10.1136/jnnp.74.1.44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller SL, Celone K, DePeau K, Diamond E, Dickerson BC, Rentz D, et al. Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proc Natl Acad Sci. 2008;105:2181–6. https://doi.org/10.1073/pnas.0706818105.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Putcha D, O’Keefe K, LaViolette P, O’Brien J, Greve D, Rentz DM, et al. Reliability of functional magnetic resonance imaging associative encoding memory paradigms in non-demented elderly adults. Hum Brain Mapp. 2011;32:2027–44. https://doi.org/10.1002/hbm.21166.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amariglio RE, Frishe K, Olson LE, Wadsworth LP, Lorius N, Sperling RA, et al. Validation of the Face Name Associative Memory Exam in cognitively normal older individuals. J Clin Exp Neuropsychol. 2012;34:580–7. https://doi.org/10.1080/13803395.2012.666230.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Troyer AK, Rowe G, Murphy KJ, Levine B, Leach L, Hasher L. Development and evaluation of a self-administered on-line test of memory and attention for middle-aged and older adults. Front Aging Neurosci. 2014;6:335.

  • Minear M, Park DC. A lifespan database of adult facial stimuli. Behav Res Methods Instrum Comput. 2004;36:630–3. https://doi.org/10.3758/BF03206543.

    Article 
    PubMed 

    Google Scholar 

  • Taylor HL, Jacobs DR, Schucker B, Knudsen J, Leon AS, Debacker G. A questionnaire for the assessment of leisure time physical activities. J Chronic Dis. 1978;31:741–55. https://doi.org/10.1016/0021-9681(78)90058-9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delis DC, Kramer JH, Kaplan E, Ober BA. Manual for the California Verbal Learning Test, (CVLT-II). San Antonio: The Psychological Corporation; 2000.

    Google Scholar 

  • Wechsler D. WAIS-3., WMS-3: Wechsler adult intelligence scale, Wechsler memory scale: Technical manual: Psychological Corporation; 1997.

    Google Scholar 

  • Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR, Ancoli-Israel S, et al. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci. 2013;16:357–64. https://doi.org/10.1038/nn.3324.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker MP. Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting. Neuron. 2018;97:221–230.e4. https://doi.org/10.1016/j.neuron.2017.11.020.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ashburner J, Friston KJ. Voxel-Based Morphometry—The Methods. NeuroImage. 2000;11:805–21. https://doi.org/10.1006/nimg.2000.0582.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. Statistical Parametric Mapping: The Analysis of Functional Brain Images: Elsevier; 2011.

    Google Scholar 

  • Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E, Alzheimer’s Disease Neuroimaging Initiative. CAT – A Computational Anatomy Toolbox for the Analysis of Structural MRI Data. 2022. Preprint at https://doi.org/10.1101/2022.06.11.495736.

  • Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38:95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007.

    Article 
    PubMed 

    Google Scholar 

  • Mak HK-F, Zhang Z, Yau KK-W, Zhang L, Chan Q, Chu L-W. Efficacy of Voxel-Based Morphometry with DARTEL and Standard Registration as Imaging Biomarkers in Alzheimer’s Disease Patients and Cognitively Normal Older Adults at 3.0 Tesla MR Imaging. J Alzheimers Dis. 2011;23:655–64. https://doi.org/10.3233/JAD-2010-101659.

    Article 
    PubMed 

    Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage. 2002;15:273–89. https://doi.org/10.1006/nimg.2001.0978.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage. 2003;19:1233–9. https://doi.org/10.1016/S1053-8119(03)00169-1.

    Article 
    PubMed 

    Google Scholar 

  • Brett M, Anton J-L, Valabregue R, Poline J-B. Region of interest analysis using an SPM toolbox, vol. 16. Sendai: NeuroImage; 2002. p. 1.

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing 2021.

    Google Scholar 

  • Lüdecke MD. sjPlot: Data Visualization for Statistics in Social Science; 2021.

    Google Scholar 

  • Long JA. Interactions: Comprehensive, User-Friendly Toolkit for Probing Interactions; 2019.

    Google Scholar 

  • Hedden T, Oh H, Younger AP, Patel TA. Meta-analysis of amyloid-cognition relations in cognitively normal older adults. Neurology. 2013;80:1341–8. https://doi.org/10.1212/WNL.0b013e31828ab35d.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson C, Horne JA. Prefrontal cortex: Links between low frequency delta EEG in sleep and neuropsychological performance in healthy, older people. Psychophysiology. 2003;40:349–57. https://doi.org/10.1111/1469-8986.00038.

    Article 
    PubMed 

    Google Scholar 

  • Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006;10:49–62. https://doi.org/10.1016/j.smrv.2005.05.002.

    Article 
    PubMed 

    Google Scholar 

  • Tononi G, Cirelli C. Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration. Neuron. 2014;81:12–34. https://doi.org/10.1016/j.neuron.2013.12.025.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci. 2008;11:200–8. https://doi.org/10.1038/nn2035.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mormino EC, Brandel MG, Madison CM, Marks S, Baker SL, Jagust WJ. Aβ Deposition in Aging Is Associated with Increases in Brain Activation during Successful Memory Encoding. Cereb Cortex. 2012;22:1813–23. https://doi.org/10.1093/cercor/bhr255.

    Article 
    PubMed 

    Google Scholar 

  • Elman JA, Oh H, Madison CM, Baker SL, Vogel JW, Marks SM, et al. Neural compensation in older people with brain amyloid-β deposition. Nat Neurosci. 2014;17:1316–8. https://doi.org/10.1038/nn.3806.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huijbers W, Mormino EC, Schultz AP, Wigman S, Ward AM, Larvie M, et al. Amyloid-β deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression. Brain. 2015;138:1023–35. https://doi.org/10.1093/brain/awv007.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, et al. Reduction of Hippocampal Hyperactivity Improves Cognition in Amnestic Mild Cognitive Impairment. Neuron. 2012;74:467–74. https://doi.org/10.1016/j.neuron.2012.03.023.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995;102:419–57. https://doi.org/10.1037/0033-295X.102.3.419.

    Article 
    PubMed 

    Google Scholar 

  • Buzsáki G. The Hippocampo-Neocortical Dialogue. Cereb Cortex. 1996;6:81–92. https://doi.org/10.1093/cercor/6.2.81.

    Article 
    PubMed 

    Google Scholar 

  • Born J, Wilhelm I. System consolidation of memory during sleep. Psychol Res. 2012;76:192–203. https://doi.org/10.1007/s00426-011-0335-6.

    Article 
    PubMed 

    Google Scholar 

  • Walker MP. The Role of Sleep in Cognition and Emotion. Ann N Y Acad Sci. 2009;1156:168–97. https://doi.org/10.1111/j.1749-6632.2009.04416.x.

    Article 
    PubMed 

    Google Scholar 

  • Gais S, Albouy G, Boly M, Dang-Vu TT, Darsaud A, Desseilles M, et al. Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci. 2007;104:18778–83. https://doi.org/10.1073/pnas.0705454104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takashima A, Petersson KM, Rutters F, Tendolkar I, Jensen O, Zwarts MJ, et al. Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study. Proc Natl Acad Sci. 2006;103:756–61. https://doi.org/10.1073/pnas.0507774103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker MP, Stickgold R. Sleep, Memory, and Plasticity. Annu Rev Psychol. 2006;57:139–66. https://doi.org/10.1146/annurev.psych.56.091103.070307.

    Article 
    PubMed 

    Google Scholar 

  • Harrison Y, Horne JA. Sleep Loss and Temporal Memory. Q J Exp Psychol Sect A. 2000;53:271–9. https://doi.org/10.1080/713755870.

    Article 
    CAS 

    Google Scholar 

  • Yoo S-S, Hu PT, Gujar N, Jolesz FA, Walker MP. A deficit in the ability to form new human memories without sleep. Nat Neurosci. 2007;10:385–92. https://doi.org/10.1038/nn1851.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zott B, Simon MM, Hong W, Unger F, Chen-Engerer H-J, Frosch MP, et al. A vicious cycle of β amyloid–dependent neuronal hyperactivation. Science. 2019;365:559–65. https://doi.org/10.1126/science.aay0198.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep Drives Metabolite Clearance from the Adult Brain. Science. 2013;342:373–7. https://doi.org/10.1126/science.1241224.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eide PK, Vinje V, Pripp AH, Mardal K-A, Ringstad G. Sleep deprivation impairs molecular clearance from the human brain. Brain. 2021;144:863–74. https://doi.org/10.1093/brain/awaa443.

    Article 
    PubMed 

    Google Scholar 

  • Hablitz LM, Vinitsky HS, Sun Q, Stæger FF, Sigurdsson B, Mortensen KN, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv. 2019;5:eaav5447. https://doi.org/10.1126/sciadv.aav5447.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siow TY, Toh CH, Hsu J-L, Liu G-H, Lee S-H, Chen N-H, et al. Association of Sleep, Neuropsychological Performance, and Gray Matter Volume With Glymphatic Function in Community-Dwelling Older Adults. Neurology. 2022;98:e829–38. https://doi.org/10.1212/WNL.0000000000013215.

    Article 
    PubMed 

    Google Scholar 

  • Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560:185–91. https://doi.org/10.1038/s41586-018-0368-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi C, Park J, Kim H, Chang KT, Park J, Min K-T. DSCR1 upregulation enhances dural meningeal lymphatic drainage to attenuate amyloid pathology of Alzheimer’s disease. J Pathol. 2021;255:296–310. https://doi.org/10.1002/path.5767.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang B, Li W, Zhuo Y, Xiang H, Li W, Liu H, et al. L-3-n-Butylphthalide Effectively Improves the Glymphatic Clearance and Reduce Amyloid-β Deposition in Alzheimer’s Transgenic Mice. J Mol Neurosci. 2021;71:1266–74. https://doi.org/10.1007/s12031-020-01752-z.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crooks VC, Lubben J, Petitti DB, Little D, Chiu V. Social network, cognitive function, and dementia incidence among elderly women. Am J Public Health. 2008;98:1221–7. https://doi.org/10.2105/AJPH.2007.115923.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3. https://doi.org/10.1038/nature05278.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M, et al. Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci. 2007;104:8496–501. https://doi.org/10.1073/pnas.0702495104.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perl O, Arzi A, Sela L, Secundo L, Holtzman Y, Samnon P, et al. Odors enhance slow-wave activity in non-rapid eye movement sleep. J Neurophysiol. 2016;115:2294–302. https://doi.org/10.1152/jn.01001.2015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tononi G, Riedner B, Hulse B, Ferrarelli F, Sarasso S. Enhancing sleep slow waves with natural stimuli. MedicaMundi. 2010;54:82–8.

    Google Scholar 

  • Wilckens KA, Ferrarelli F, Walker MP, Buysse DJ. Slow-Wave Activity Enhancement to Improve Cognition. Trends Neurosci. 2018;41:470–82. https://doi.org/10.1016/j.tins.2018.03.003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raymann RJEM, Swaab DF, Van Someren EJW. Skin deep: enhanced sleep depth by cutaneous temperature manipulation. Brain. 2008;131:500–13. https://doi.org/10.1093/brain/awm315.

    Article 
    PubMed 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *