Manly JJ, Jones RN, Langa KM, Ryan LH, Levine DA, McCammon R, et al. Estimating the Prevalence of Dementia and Mild Cognitive Impairment in the US: The 2016 Health and Retirement Study Harmonized Cognitive Assessment Protocol Project. JAMA Neurol. 2022;79:1242–9. https://doi.org/10.1001/jamaneurol.2022.3543.
Google Scholar
Prince M, Wimo A, Guerchet M, et al. World Alzheimer Report 2015: The Global Impact of Dementia – An analysis of prevalence, incidence, cost and trends. Alzheimer’s Disease International. 2015. https://www.alzint.org/u/WorldAlzheimerReport2015.pdf. Accessed 01 Feb 2023.
Pike KE, Ellis KA, Villemagne VL, Good N, Chételat G, Ames D, et al. Cognition and beta-amyloid in preclinical Alzheimer’s disease: Data from the AIBL study. Neuropsychologia. 2011;49:2384–90. https://doi.org/10.1016/j.neuropsychologia.2011.04.012.
Google Scholar
Petersen RC, Wiste HJ, Weigand SD, Rocca WA, Roberts RO, Mielke MM, et al. Association of Elevated Amyloid Levels With Cognition and Biomarkers in Cognitively Normal People From the Community. JAMA Neurol. 2016;73:85–92. https://doi.org/10.1001/jamaneurol.2015.3098.
Google Scholar
Lim YY, Pietrzak RH, Ellis KA, Jaeger J, Harrington K, Ashwood T, et al. Rapid decline in episodic memory in healthy older adults with high amyloid-β. J Alzheimers Dis JAD. 2013;33:675–9. https://doi.org/10.3233/JAD-2012-121516.
Google Scholar
Papp KV, Mormino EC, Amariglio RE, Munro C, Dagley A, Schultz AP, et al. Biomarker Validation of a Decline in Semantic Processing in Preclinical Alzheimer’s Disease. Neuropsychology. 2016;30:624–30. https://doi.org/10.1037/neu0000246.
Google Scholar
Roe CM, Fagan AM, Grant EA, Hassenstab J, Moulder KL, Maue Dreyfus D, et al. Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology. 2013;80:1784–91. https://doi.org/10.1212/WNL.0b013e3182918ca6.
Google Scholar
Betthauser TJ, Koscik RL, Jonaitis EM, Allison SL, Cody KA, Erickson CM, et al. Amyloid and tau imaging biomarkers explain cognitive decline from late middle-age. Brain. 2020;143:320–35. https://doi.org/10.1093/brain/awz378.
Google Scholar
Schöll M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, et al. PET Imaging of Tau Deposition in the Aging Human Brain. Neuron. 2016;89:971–82. https://doi.org/10.1016/j.neuron.2016.01.028.
Google Scholar
Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28. https://doi.org/10.1016/S1474-4422(09)70299-6.
Google Scholar
Mormino EC. The relevance of beta-amyloid on markers of Alzheimer’s disease in clinically normal individuals and factors that influence these associations. Neuropsychol Rev. 2014;24:300–12. https://doi.org/10.1007/s11065-014-9267-4.
Google Scholar
Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, Belleville S, Cantilon M, Chetelat G, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 2020;16:1305–11. https://doi.org/10.1016/j.jalz.2018.07.219.
Google Scholar
Bartrés-Faz D, Arenaza-Urquijo E, Ewers M, Belleville S, Chételat G, Franzmeier N, et al. Theoretical frameworks and approaches used within the Reserve, Resilience and Protective Factors professional interest area of the Alzheimer’s Association International Society to Advance Alzheimer’s Research and Treatment. Alzheimers Dement Diagn Assess Dis Monit. 2020;12:e12115. https://doi.org/10.1002/dad2.12115.
Google Scholar
Vemuri P, Lesnick TG, Przybelski SA, Knopman DS, Preboske GM, Kantarci K, et al. Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly. Brain. 2015;138:761–71. https://doi.org/10.1093/brain/awu393.
Google Scholar
Groot C, van Loenhoud AC, Barkhof F, van Berckel BNM, Koene T, Teunissen CC, et al. Differential effects of cognitive reserve and brain reserve on cognition in Alzheimer disease. Neurology. 2018;90:e149–56. https://doi.org/10.1212/WNL.0000000000004802.
Google Scholar
Kemppainen NM, Aalto S, Karrasch M, Någren K, Savisto N, Oikonen V, et al. Cognitive reserve hypothesis: Pittsburgh Compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer’s disease. Ann Neurol. 2008;63:112–8. https://doi.org/10.1002/ana.21212.
Google Scholar
Boots EA, Schultz SA, Almeida RP, Oh JM, Koscik RL, Dowling MN, et al. Occupational Complexity and Cognitive Reserve in a Middle-Aged Cohort at Risk for Alzheimer’s Disease. Arch Clin Neuropsychol. 2015;30:634–42. https://doi.org/10.1093/arclin/acv041.
Google Scholar
Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D, Mayeux R. Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA. 1994;271:1004–10.
Google Scholar
Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, et al. Physical Activity, Diet, and Risk of Alzheimer Disease. JAMA. 2009;302:627–37. https://doi.org/10.1001/jama.2009.1144.
Google Scholar
Okonkwo OC, Schultz SA, Oh JM, Larson J, Edwards D, Cook D, et al. Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology. 2014;83:1753–60. https://doi.org/10.1212/WNL.0000000000000964.
Google Scholar
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.
Google Scholar
Jones K, Harrison Y. Frontal lobe function, sleep loss and fragmented sleep. Sleep Med Rev. 2001;5:463–75. https://doi.org/10.1053/smrv.2001.0203.
Google Scholar
Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11:114–26. https://doi.org/10.1038/nrn2762.
Google Scholar
Papalambros NA, Santostasi G, Malkani RG, Braun R, Weintraub S, Paller KA, et al. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults. Front Hum Neurosci. 2017;11:109. https://doi.org/10.3389/fnhum.2017.00109.
Google Scholar
Ladenbauer J, Ladenbauer J, Külzow N, de Boor R, Avramova E, Grittner U, et al. Promoting Sleep Oscillations and Their Functional Coupling by Transcranial Stimulation Enhances Memory Consolidation in Mild Cognitive Impairment. J Neurosci. 2017;37:7111–24. https://doi.org/10.1523/JNEUROSCI.0260-17.2017.
Google Scholar
Van Der Werf YD, Altena E, Schoonheim MM, Sanz-Arigita EJ, Vis JC, De Rijke W, et al. Sleep benefits subsequent hippocampal functioning. Nat Neurosci. 2009;12:122–3. https://doi.org/10.1038/nn.2253.
Google Scholar
Mander BA, Marks SM, Vogel JW, Rao V, Lu B, Saletin JM, et al. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci. 2015;18:1051–7. https://doi.org/10.1038/nn.4035.
Google Scholar
Molano JRV, Roe CM, Ju Y-ES. The interaction of sleep and amyloid deposition on cognitive performance. J Sleep Res. 2017;26:288–92. https://doi.org/10.1111/jsr.12474.
Google Scholar
Villeneuve S, Rabinovici GD, Cohn-Sheehy BI, Madison C, Ayakta N, Ghosh PM, et al. Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain. 2015;138:2020–33. https://doi.org/10.1093/brain/awv112.
Google Scholar
Maass A, Berron D, Harrison TM, Adams JN, La Joie R, Baker S, et al. Alzheimer’s pathology targets distinct memory networks in the ageing brain. Brain. 2019;142:2492–509. https://doi.org/10.1093/brain/awz154.
Google Scholar
Winer JR, Mander BA, Helfrich RF, Maass A, Harrison TM, Baker SL, et al. Sleep as a Potential Biomarker of Tau and β-Amyloid Burden in the Human Brain. J Neurosci. 2019;39:6315–24. https://doi.org/10.1523/JNEUROSCI.0503-19.2019.
Google Scholar
Achermann P, Borbély AA. Low-frequency (<1Hz) oscillations in the human sleep electroencephalogram. Neuroscience. 1997;81:213–22. https://doi.org/10.1016/S0306-4522(97)00186-3.
Google Scholar
Steriade M, Contreras D, Curro Dossi R, Nunez A. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci. 1993;13:3284–99. https://doi.org/10.1523/JNEUROSCI.13-08-03284.1993.
Google Scholar
Jack CR, Knopman DS, Weigand SD, Wiste HJ, Vemuri P, Lowe V, et al. An operational approach to National Institute on Aging–Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol. 2012;71:765–75. https://doi.org/10.1002/ana.22628.
Google Scholar
Vos SJ, Xiong C, Visser PJ, Jasielec MS, Hassenstab J, Grant EA, et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 2013;12:957–65. https://doi.org/10.1016/S1474-4422(13)70194-7.
Google Scholar
Kocevska D, Lysen TS, Dotinga A, Koopman-Verhoeff ME, Luijk MP, Antypa N, et al. Sleep characteristics across the lifespan in 1.1 million people from the Netherlands, United Kingdom and United States: a systematic review and meta-analysis. Nat Hum Behav. 2021;5:113–22.
Google Scholar
Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. Meta-Analysis of Quantitative Sleep Parameters From Childhood to Old Age in Healthy Individuals: Developing Normative Sleep Values Across the Human Lifespan. Sleep. 2004;27:1255–73. https://doi.org/10.1093/sleep/27.7.1255.
Google Scholar
Agnew HW Jr, Webb WB Jr, Williams RL Jr. The first night effect: An EEG study of sleep. Psychophysiology. 1966;2:263–6. https://doi.org/10.1111/j.1469-8986.1966.tb02650.x.
Google Scholar
Wauquier A, Van Sweden B, KerkhofGA KHAC. Ambulatory first night sleep effect recording in the elderly. Behav Brain Res. 1991;42:7–11. https://doi.org/10.1016/S0166-4328(05)80034-8.
Google Scholar
Mander BA, Rao V, Lu B, Saletin JM, Ancoli-Israel S, Jagust WJ, et al. Impaired Prefrontal Sleep Spindle Regulation of Hippocampal-Dependent Learning in Older Adults. Cereb Cortex. 2014;24:3301–9. https://doi.org/10.1093/cercor/bht188.
Google Scholar
Siscovick DS, Fried L, Mittelmark M, Rutan G, Bild D, O’Leary DH, et al. Exercise Intensity and Subclinical Cardiovascular Disease in the Elderly: The Cardiovascular Health Study. Am J Epidemiol. 1997;145:977–86. https://doi.org/10.1093/oxfordjournals.aje.a009066.
Google Scholar
Maass A, Lockhart SN, Harrison TM, Bell RK, Mellinger T, Swinnerton K, et al. Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging. J Neurosci. 2018;38:530–43. https://doi.org/10.1523/JNEUROSCI.2028-17.2017.
Google Scholar
Rabinovici GD, Furst AJ, O’Neil JP, Racine CA, Mormino EC, Baker SL, et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology. 2007;68:1205–12. https://doi.org/10.1212/01.wnl.0000259035.98480.ed.
Google Scholar
Logan J, Fowler JS, Volkow ND, Wang G-J, Ding Y-S, Alexoff DL. Distribution Volume Ratios without Blood Sampling from Graphical Analysis of PET Data. J Cereb Blood Flow Metab. 1996;16:834–40. https://doi.org/10.1097/00004647-199609000-00008.
Google Scholar
Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic Modeling of Amyloid Binding in Humans using PET Imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47. https://doi.org/10.1038/sj.jcbfm.9600146.
Google Scholar
Vallat R, Walker MP. An open-source, high-performance tool for automated sleep staging. ELife. 2021;10:e70092. https://doi.org/10.7554/eLife.70092.
Google Scholar
Berry RB, Albertario CL, Harding SM, Lloyd RM, Plante DT, Quan SF, Troester MM, Vaughn BV. The AASM manual for the scoring of sleep and associated events. Rules, Terminology and Technical Specifications, Version 2.5. Darien, IL: Am Acad Sleep Med. 2018:17–32.
Vallat R. Yet Another Spindles Algorithm (YASA), open-source package released on GitHub under a BSD-3 Clause License. version 0.6.1. GitHub. 2018. https://github.com/raphaelvallat/yasa.
Sperling RA. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74:44–50. https://doi.org/10.1136/jnnp.74.1.44.
Google Scholar
Miller SL, Celone K, DePeau K, Diamond E, Dickerson BC, Rentz D, et al. Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proc Natl Acad Sci. 2008;105:2181–6. https://doi.org/10.1073/pnas.0706818105.
Google Scholar
Putcha D, O’Keefe K, LaViolette P, O’Brien J, Greve D, Rentz DM, et al. Reliability of functional magnetic resonance imaging associative encoding memory paradigms in non-demented elderly adults. Hum Brain Mapp. 2011;32:2027–44. https://doi.org/10.1002/hbm.21166.
Google Scholar
Amariglio RE, Frishe K, Olson LE, Wadsworth LP, Lorius N, Sperling RA, et al. Validation of the Face Name Associative Memory Exam in cognitively normal older individuals. J Clin Exp Neuropsychol. 2012;34:580–7. https://doi.org/10.1080/13803395.2012.666230.
Google Scholar
Troyer AK, Rowe G, Murphy KJ, Levine B, Leach L, Hasher L. Development and evaluation of a self-administered on-line test of memory and attention for middle-aged and older adults. Front Aging Neurosci. 2014;6:335.
Minear M, Park DC. A lifespan database of adult facial stimuli. Behav Res Methods Instrum Comput. 2004;36:630–3. https://doi.org/10.3758/BF03206543.
Google Scholar
Taylor HL, Jacobs DR, Schucker B, Knudsen J, Leon AS, Debacker G. A questionnaire for the assessment of leisure time physical activities. J Chronic Dis. 1978;31:741–55. https://doi.org/10.1016/0021-9681(78)90058-9.
Google Scholar
Delis DC, Kramer JH, Kaplan E, Ober BA. Manual for the California Verbal Learning Test, (CVLT-II). San Antonio: The Psychological Corporation; 2000.
Wechsler D. WAIS-3., WMS-3: Wechsler adult intelligence scale, Wechsler memory scale: Technical manual: Psychological Corporation; 1997.
Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR, Ancoli-Israel S, et al. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci. 2013;16:357–64. https://doi.org/10.1038/nn.3324.
Google Scholar
Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker MP. Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting. Neuron. 2018;97:221–230.e4. https://doi.org/10.1016/j.neuron.2017.11.020.
Google Scholar
Ashburner J, Friston KJ. Voxel-Based Morphometry—The Methods. NeuroImage. 2000;11:805–21. https://doi.org/10.1006/nimg.2000.0582.
Google Scholar
Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. Statistical Parametric Mapping: The Analysis of Functional Brain Images: Elsevier; 2011.
Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E, Alzheimer’s Disease Neuroimaging Initiative. CAT – A Computational Anatomy Toolbox for the Analysis of Structural MRI Data. 2022. Preprint at https://doi.org/10.1101/2022.06.11.495736.
Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38:95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007.
Google Scholar
Mak HK-F, Zhang Z, Yau KK-W, Zhang L, Chan Q, Chu L-W. Efficacy of Voxel-Based Morphometry with DARTEL and Standard Registration as Imaging Biomarkers in Alzheimer’s Disease Patients and Cognitively Normal Older Adults at 3.0 Tesla MR Imaging. J Alzheimers Dis. 2011;23:655–64. https://doi.org/10.3233/JAD-2010-101659.
Google Scholar
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage. 2002;15:273–89. https://doi.org/10.1006/nimg.2001.0978.
Google Scholar
Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage. 2003;19:1233–9. https://doi.org/10.1016/S1053-8119(03)00169-1.
Google Scholar
Brett M, Anton J-L, Valabregue R, Poline J-B. Region of interest analysis using an SPM toolbox, vol. 16. Sendai: NeuroImage; 2002. p. 1.
R Core Team. R: A language and environment for statistical computing 2021.
Lüdecke MD. sjPlot: Data Visualization for Statistics in Social Science; 2021.
Long JA. Interactions: Comprehensive, User-Friendly Toolkit for Probing Interactions; 2019.
Hedden T, Oh H, Younger AP, Patel TA. Meta-analysis of amyloid-cognition relations in cognitively normal older adults. Neurology. 2013;80:1341–8. https://doi.org/10.1212/WNL.0b013e31828ab35d.
Google Scholar
Anderson C, Horne JA. Prefrontal cortex: Links between low frequency delta EEG in sleep and neuropsychological performance in healthy, older people. Psychophysiology. 2003;40:349–57. https://doi.org/10.1111/1469-8986.00038.
Google Scholar
Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006;10:49–62. https://doi.org/10.1016/j.smrv.2005.05.002.
Google Scholar
Tononi G, Cirelli C. Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration. Neuron. 2014;81:12–34. https://doi.org/10.1016/j.neuron.2013.12.025.
Google Scholar
Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci. 2008;11:200–8. https://doi.org/10.1038/nn2035.
Google Scholar
Mormino EC, Brandel MG, Madison CM, Marks S, Baker SL, Jagust WJ. Aβ Deposition in Aging Is Associated with Increases in Brain Activation during Successful Memory Encoding. Cereb Cortex. 2012;22:1813–23. https://doi.org/10.1093/cercor/bhr255.
Google Scholar
Elman JA, Oh H, Madison CM, Baker SL, Vogel JW, Marks SM, et al. Neural compensation in older people with brain amyloid-β deposition. Nat Neurosci. 2014;17:1316–8. https://doi.org/10.1038/nn.3806.
Google Scholar
Huijbers W, Mormino EC, Schultz AP, Wigman S, Ward AM, Larvie M, et al. Amyloid-β deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression. Brain. 2015;138:1023–35. https://doi.org/10.1093/brain/awv007.
Google Scholar
Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, et al. Reduction of Hippocampal Hyperactivity Improves Cognition in Amnestic Mild Cognitive Impairment. Neuron. 2012;74:467–74. https://doi.org/10.1016/j.neuron.2012.03.023.
Google Scholar
McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995;102:419–57. https://doi.org/10.1037/0033-295X.102.3.419.
Google Scholar
Buzsáki G. The Hippocampo-Neocortical Dialogue. Cereb Cortex. 1996;6:81–92. https://doi.org/10.1093/cercor/6.2.81.
Google Scholar
Born J, Wilhelm I. System consolidation of memory during sleep. Psychol Res. 2012;76:192–203. https://doi.org/10.1007/s00426-011-0335-6.
Google Scholar
Walker MP. The Role of Sleep in Cognition and Emotion. Ann N Y Acad Sci. 2009;1156:168–97. https://doi.org/10.1111/j.1749-6632.2009.04416.x.
Google Scholar
Gais S, Albouy G, Boly M, Dang-Vu TT, Darsaud A, Desseilles M, et al. Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci. 2007;104:18778–83. https://doi.org/10.1073/pnas.0705454104.
Google Scholar
Takashima A, Petersson KM, Rutters F, Tendolkar I, Jensen O, Zwarts MJ, et al. Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study. Proc Natl Acad Sci. 2006;103:756–61. https://doi.org/10.1073/pnas.0507774103.
Google Scholar
Walker MP, Stickgold R. Sleep, Memory, and Plasticity. Annu Rev Psychol. 2006;57:139–66. https://doi.org/10.1146/annurev.psych.56.091103.070307.
Google Scholar
Harrison Y, Horne JA. Sleep Loss and Temporal Memory. Q J Exp Psychol Sect A. 2000;53:271–9. https://doi.org/10.1080/713755870.
Google Scholar
Yoo S-S, Hu PT, Gujar N, Jolesz FA, Walker MP. A deficit in the ability to form new human memories without sleep. Nat Neurosci. 2007;10:385–92. https://doi.org/10.1038/nn1851.
Google Scholar
Zott B, Simon MM, Hong W, Unger F, Chen-Engerer H-J, Frosch MP, et al. A vicious cycle of β amyloid–dependent neuronal hyperactivation. Science. 2019;365:559–65. https://doi.org/10.1126/science.aay0198.
Google Scholar
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep Drives Metabolite Clearance from the Adult Brain. Science. 2013;342:373–7. https://doi.org/10.1126/science.1241224.
Google Scholar
Eide PK, Vinje V, Pripp AH, Mardal K-A, Ringstad G. Sleep deprivation impairs molecular clearance from the human brain. Brain. 2021;144:863–74. https://doi.org/10.1093/brain/awaa443.
Google Scholar
Hablitz LM, Vinitsky HS, Sun Q, Stæger FF, Sigurdsson B, Mortensen KN, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv. 2019;5:eaav5447. https://doi.org/10.1126/sciadv.aav5447.
Google Scholar
Siow TY, Toh CH, Hsu J-L, Liu G-H, Lee S-H, Chen N-H, et al. Association of Sleep, Neuropsychological Performance, and Gray Matter Volume With Glymphatic Function in Community-Dwelling Older Adults. Neurology. 2022;98:e829–38. https://doi.org/10.1212/WNL.0000000000013215.
Google Scholar
Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560:185–91. https://doi.org/10.1038/s41586-018-0368-8.
Google Scholar
Choi C, Park J, Kim H, Chang KT, Park J, Min K-T. DSCR1 upregulation enhances dural meningeal lymphatic drainage to attenuate amyloid pathology of Alzheimer’s disease. J Pathol. 2021;255:296–310. https://doi.org/10.1002/path.5767.
Google Scholar
Zhang B, Li W, Zhuo Y, Xiang H, Li W, Liu H, et al. L-3-n-Butylphthalide Effectively Improves the Glymphatic Clearance and Reduce Amyloid-β Deposition in Alzheimer’s Transgenic Mice. J Mol Neurosci. 2021;71:1266–74. https://doi.org/10.1007/s12031-020-01752-z.
Google Scholar
Crooks VC, Lubben J, Petitti DB, Little D, Chiu V. Social network, cognitive function, and dementia incidence among elderly women. Am J Public Health. 2008;98:1221–7. https://doi.org/10.2105/AJPH.2007.115923.
Google Scholar
Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3. https://doi.org/10.1038/nature05278.
Google Scholar
Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M, et al. Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci. 2007;104:8496–501. https://doi.org/10.1073/pnas.0702495104.
Google Scholar
Perl O, Arzi A, Sela L, Secundo L, Holtzman Y, Samnon P, et al. Odors enhance slow-wave activity in non-rapid eye movement sleep. J Neurophysiol. 2016;115:2294–302. https://doi.org/10.1152/jn.01001.2015.
Google Scholar
Tononi G, Riedner B, Hulse B, Ferrarelli F, Sarasso S. Enhancing sleep slow waves with natural stimuli. MedicaMundi. 2010;54:82–8.
Wilckens KA, Ferrarelli F, Walker MP, Buysse DJ. Slow-Wave Activity Enhancement to Improve Cognition. Trends Neurosci. 2018;41:470–82. https://doi.org/10.1016/j.tins.2018.03.003.
Google Scholar
Raymann RJEM, Swaab DF, Van Someren EJW. Skin deep: enhanced sleep depth by cutaneous temperature manipulation. Brain. 2008;131:500–13. https://doi.org/10.1093/brain/awm315.
Google Scholar